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Abstract l/.I

Ul

The present study numerically demonstrates how Umi n

small spanwise variations in velocity upstream of

a body can cause relatively large increases in the U"

spanwise-averaged heat transfer to the leading edge. x

Vorticity introduced by spanwise variations, first de- /kx

cays as it drifts downstream, then anaplifies in the Xwi,.e

stagnation region as a result of vortex stretching, y
This amplification can cause a periodic array of three- z

dimensional structures, similar to horseshoe vortices,

to form. The numerical results indicate that, for
a given wavelength, there is an amplitude thresh-

old below which a structure does not form. A one- A

dimensional analysis, to predict the decay of vorticity 3'

in the absence of the body, in conjunction with the p
full numerical results indicates that the threshold is fl

more accurately stated as a minimum level of vortic- (2
ity required in the leading edge region for a structure

to form. It is possible, using the one-dimensional anal- P
ysis, to compute an optimum wavelength in terms of a

the maximum vorticity reaching the leading edge re- 0
gion for given amplitude. A discussion is presented

which relates experimentally observed trends to the

trends of the present phenomena.

Nomenclature ()e

A peak to peak velocity difference ()!
normalized by the average velocity

d dianaeter of wires in screen ()L.E.

Fr Frossliug number (Fr = Nu/x/_) ()min

k thermal conductivity

M Mach number ()._
Nu Nusselt number

p pressure ()opt

qw wall heat transfer

R leading edge radius Ot

Re_: Reynolds number (i.e., Re, = poUx/#o ) ()th

T temperature ()_

u streamwise velocity ()w/re

v normal velocity (_)0

* Member AIAA ()

spanwise velocity

velocity difference (ie. ua = u- U )

minimum streamwise velocity in

x - z symmetry plane

spanwise-averaged freestream velocity
streamwise direction

distance from x0

denotes position of screen
normal direction

spanwise direction

Greek Symbols

wavelength of spanwise variation

ratio of specific heats

viscosity of fluid

vorticity oriented in the y-direction

normalized vorticity predicted by the

analysis (ie. _ = f2/(rr-U/R))

density of fluid

solidity of array of wires

distance along surface normalized by the

leading edge radius

Subscripts and Superscripts

conditions at the exit

represents the mean value in the

boundary layer (ie. film)

denotes leading edge

represents the minimum value on the

stagnation line

represents the maximum value on the

stagnation line

wavelength for which analysis predicts

maximum peak vorticity at leading edge
total conditions

threshold point at which structure forms
value at wall

denotes position of array of wires

denotes upstream boundary

spanwise-averaged quantity
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Figure 1: Geometry of Problem

I Introduction

The prediction of heat transfer to the leading

edge of gas turbine blades is very important to the

design process. Typically, the leading edge is a lo-

cation of high heat transfer. It has been known for
some time that relatively snmll increases in fi'eestream

turbulence above a nominally laminar flow can cause

large incre_es in the heat transfer at a forward stag-

nation region [1]. Itowever, the mechanism by which
such an increase occurs is not well understood. It has

also been observed experimentally that spanwise varia-

tions in the heat transfer occur, with wavelengths that

vary inversely as the square root of the Reynolds num-

ber, in flows with very small spanwise variations in the

freestream velocity. This phenomena has been studied

experimentally as it influences heat transfer [2, 3] and

mass transfer [4, 5, 6]. The experiments indicate that
spanwise velocity variations on the order of 1% can
cause the transfer coefficients to increase on the order

of 20%.

Asymptotic analysis for small perturbations in the

spanwise direction [7, 8, 9, 10, 11] indicate that distur-

bances with a wavelength greater than some neutral

wavelength can be amplified in the boundary layer.

tIowever, prediction of the neutral wavelength and the

most unstable wavelength differs from author to au-

thor. In fact, Ilammerlin [12] found instability for a

contimlous spectrum of wave numbers, while Wilson

and Gladwell [13] found the flow w_ always stable
to infinitesimal disturbances. More recently, Thomp-

son [14] found that stagnation flow exhibits instability
if unsteadiness is introduced into the basic state of the

flow. Itis analysis suggests that there is an amplitude

threshold on the unsteadiness for instability to occur.

ht a review of this type of flow, Morkovin [15]

discusses the limits of tile available analysis tools as

well as the uncertainties in experiments. It is unclear

whether the major effects are a result of the random

unsteady turbulence or a result of large, essentially

steady, three-dimensional structures. These structures
could be the result of small spanwise perturbations in

the freestream. Morkoviu [15] also raises the ques-
tion of forced or free response: "The general impres-

sions seem to be that some forcing is present and that
somehow the characteristics of the boundary layer on

the cylinder enter the quantitative dctermlnalion of

the geometry of the horseshoe vortices." Based on a
combination of flow visualization, turbulence measure-

ments, and spanwisc heat transfer measurements, Van

Fossen and Simoneau [2] arrived at the same general

impressions.
Numerical studies attempting to model the tur-

bulence [16, 17, 18] have also been undertaken with a

certain degree of success. IIowever, if the experimental
results are dominated by a steady spatial variation or
even a nonrandom variation in the third dimension, a

two-dimensional calculation with a turbulence model

will not properly predict the flow features.

The present work will concentrate on the effect of

a steady spanwise velocity variation on the heat trans-
fer at the leading edge. Numerical solutions of the full

three dimensional Navier-Stokes equations are used to

investigate the requirements for the formation of a
horseshoe-like vortex, and to show the effect of these
vortices on the heat transfer coefficient at the leading

edge. In addition, a parallel flow analysis which pre-
dicts the decay of vorticity in the absence of the body is

cmployed. This analysis proves to be useful in predict-

ing the threshold level of vorticity for the formation of

a vortex structure. The parallel flow analysis also pre-

dicts the optimum wavelength in ter,ns of supplying

the maximum vorticity to the leading edge region.

II Statement of Problem

Consider the problem of a flat plate with a cylin-

drical leading edge of radius R, Figure 1. The body
is assumed to be infinite and uniform in tile spanwise
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Figure2:37x51x22

direction,andsemi-infinitein thestreamwisedirec-
tion. Upstreamof thebody,theflowhasa sinusoidal
variationof velocityin thespanwisedirectionwitha
wavelength_, whichintroducesvorticityoriented per-
pendicular to the z - z plane. The heat flux on the

body is fixed at a uniform value. The peak to peak

velocity variation as a percentage of the average up-
stream velocity is defined as A0 and the wavelength is

denoted by ,_. The velocity distribution is imposed at

a position upstream of the leading edge, denoted by

z0. This position is very important to note since the

vorticity first decays as it approaches the body, then

is amplified in the region near the leading edge. By
ignoring the presence of the body, the rate of decay

of the vorticity can be estimated from a parallel flow
analysis, as will be shown below.

III Solution Method
The solution was computed using the PARC3D

code, which uses the Beam and Warming approxi-

mate factorization algorithm, a time marching im-
plicit scheme that solves the Navier-Stokes equations

in strong conservation form. It uses second order

accurate central-differencing for spatial derivatives.

The code was originally developed as AIR3D by Pul-

liam and Steger [19]; Pulliam [20] later added the
Jameson [21] artificial dissipation and called the code

ARC3D. Cooper [22] adapted the code for internal

flows in propulsion applications and named the code
PA RC3D.

For the present application, the equations are
solved for the steady laminar flow solution in the

leading edge region, with the algebraic Baldwin-

Lomax [23] turbulence model turned on just down-

grid for )_ = OAR

stream of the juncture between tile cylinder and flat

plate. During the initial part of the calculation, the
turbulence is updated at each iteration; then it is

frozen and only recalculated each time the calculation

is restarted, roughly every 2500 iterations. This freez-

ing of the turbulence conserves computer time, and

enhances the rate of convergence.

The turbulence model is used here simply to en-

hance convergence by limiting any reverse flow which

may occur in this region. The primary focus is the

leading edge region, which should not be greatly af-

fected by the turbulence downstream. Because of the

central-differencing, the code has Jameson [21] type,

fourth order, artificial dissipation for stability. The ar-

tificial dissipation is added both explicitly and implic-
itly; the coefficient varies both spatially and direction-

ally to minimize the dissipation [24, 25]. Although a

dissipation model which varied the coefficient spatially

but not directionally was too dissipative, it gave very

good convergence rates. Because of this, the local-

directional model was used both upstream of and on

the cylindrical leading edge, and the local model was
used both on the flat plate portion and downstream

of the leading edge. In a problem of this type, it is
especially important to use a method where the de-

cay of freestream vorticity from numerical dissipation

is small compared to the decay from the physics of the
flow. Included in the results is a demonstration that

the decay of freestream vortielty is properly calculated.

A C-grid, shown in Figure 2, was used; half of the

grid was eliminated by imposing symmetry in the z- z
plane. The grid extended 10 radii up and downstream

and ranged from z = )_/2 to z = )_.

3



The PARC3Dcoderequires about 30 words of

storage per grid point and 22 x 10 -6 seconds of CPU

time per iteration per grid point on the NAS Cray

Y/MP. Each case took approximately 5000 iterations,
for typical run times oil the order of 5000 CPU sec-

onds. For each value of)_, the problem was first solved

for some value of A0, then A0 was changed, and the

previous solution was used as an initial guess. This re-

sulted in fewer iterations required for subsequent runs.

Boundary Conditions

A symmetry condition was imposed at z = A/2

and z = A. Symmetry was imposed by using second
order accurate one-sided differences.

On the body, no-slip, constant heat flux conditions

were enforced, along with a zero normal pressure gra-
dient. At the exit, static pressure was imposed while

velocity components and total energy were linearly ex-
trapolated. The upstream boundary condition is de-

termined by specifying tile total temperature and total

pressure, and requiring that the flow be aligned with
the x-direction. Then at each iteration, the upstream

running Ricmann invariant is extrapolated to predict
the velocity and density. The original code used ze-

roeth order extrapolation, evaluating the invariant one

grid point in from tile boundary and imposing it at the

boundary. Using this technique resulted in a "kink"
in the decay of vorticity at the upstream boundary;

that is, tile vorticity showed very little decay between

the first two grid points and then decayed normally.

This problem was greatly reduced by using a linear

extrapolation for the Riemann invariant.

To produce a sinusoidal velocity variation at the

upstream boundary, the total pressure was specified

by

7- 1 , A_) 2xz
pt = pe{l+_[M (1-_'(l+eos(--ff'))]2} _'4"_-_(1)

where M _ is approximately the peak Mach number at

the upstream boundary and A t will be roughly the

peak-to-peak velocity difference as a percentage of the

inlet velocity. This boundary condition will produce a

Mach number and amplitude slightly different from M _

and A t. The results are reported based on the actual

solution, not on the idealized parameters. For all of the

present cases M _ = 0.2, resulting in freestream Mach

numbers of roughly 0.17. The total temperature was

specified by

T_= T0{l+ -_[M'(1 - -_(1 +cos(_-_-))] _} (2)

This total temperature profile was imposed simply as

an aid to assess the numerical dissipation of the code.

This profile produces a uniform entropy profile at

the upstream boundary. By running the code without

the viscous terms, it was possible to see the effects of

the numerical dissipation in terms of the production of

entropy. The inviscid calculations were used to indi-

cate the number of grid points required for an accurate

calculation of the decay of vorticity in the fi'eestream.

The total temperature profile was left as stated above

for all the runs, since its effect is negligible at the low
Mach numbers.

IV Decay of vorticity in the
freestream

To approximate the rate of decay of vorticity be-

tween the upstream boundary and the body, consider

the flow of an incompressible fluid in the x - z plane.

Flow is assumed to be in the z-direction only, with

a periodic variation in the z-direction. In addition,

assume that the pressure gradient in the x-direction

is zero and that the initial periodic variation is small

compared to the average velocity. Then, let the veloc-

ity difference be

ul(x, z) = U - u(x, z) (3)

where U is the average velocity. The appropriate equa-

tion governing the velocity difference, ul, is

OU I /ff (_2U 1

Ox - F Oz2 (4)

assuming ul/U << 1, where the boundary layer as-

sumption has been made and terms quadratic in ul

and Wx have been neglected; wl is the cross stream

velocity, which is being neglected. The boundary con-
ditions are

at x= x0

periodic

AoU ,27rz,
: = (5)

: (6)

where A0 is an arbitrary constant, but must be small

compared to one. The solution to this equation with

these boundary conditions is

ul(x, z) = -_cos( 27rz 47r_ (x -x0)) (7)

m

where Re_, = UA/u . Of particular interest is the

vorticity, which is oriented out of the x - z plane, and
can be written as

0Ul

a(., (8)
7rAoU 2_rz 47r2 (x - xo)

-  in(-5--)exp ( )(9)A Re;_ A

Notice that the level of vorticity is everywhere directly

proportional to the constant A0, but the rate of decay

is strongly dependent on the wavelength. Increasing
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Figure 3: Convergence IIistory for _ = OAR, A = 0.04, Ren = 6500

decreases the initial value of vorticity at x = z0, but

it also decreases the rate of decay so that at some dis-

tance downstream, the level of vorticity wilI be greater

than that for a case with a smaller A and the same A0.

The wavelength which results in the maximum peak

vorticity at some distance downstream, to be referred

to as the optimum wavelength )_opt, can be written as

8_2 (10)Aopt = Ax Re,xz

where Ax = z - z0 and ReA_: = U(x- Zo)/U . Note

that the optimum wavelength is directly proportional
to _ for a given velocity, and inversely proportional

to _ for a given Az.

The main result of this analysis is tile finding that
an upstream variation with the same amplitude but a

longer wavelength will not necessarily create a smaller

disturbance at the leading edge of the body. Further

discussion of this point will appear below as it pertains

directly to the numerical results.

V Results

For the present study, the effect of varying the

wavelength A and tile amplitude A0 of the upstream

velocity profile are considered. The Reynolds num-

ber based on the leading edge radius is 6500, and the

fixed wall heat transfer is set at q,_ --4koTo/R for
all cases, where k0 and To are the freestream tiler-

mal conductivity and temperature, respectively. This
level of heat transfer results in a temperature rise of

roughly 10% above the freestream absolute temper-

ature. Calculations were run for three values of A,

A -- 0.2R, OAR, and 0.SR. The parameter A0 varied

through the range 0.0 to 0.066. The grid used for these

cases was 37x51x22, in the streamwise, normal, and

spanwise directions, respectively. The case of A0 = 0

was calculated using the same x - y grid as tile three

dimensional cases, but only five grid points in the z-
direction. The case of ,_ = 0.2R and A0 = 0.066 was

also calculated, using a grid of 76x101x42 to check

grid dependency. For the cases with A = 0.2R, uni-

form grid spacing ill the z-direction was used. After

running the ,_ = OAR cases, the decision was made

to use geometric stretching in the spanwise direction

to cluster points in the region where the vortex forms.

The ), = 0.4R cases were then rerun. Comparison of
these two sets of runs is used as an additional check on

grid dependency. The _ = 0.8R cases were done with

ge6metric stretching in the z-direction.

Convergence Criterion

For each case the code was run until the resid-

ual dropped below 5 x 10 -1°, corresponding to a drop

of roughly three orders of magnitude from the initial
level. The residual is defined as the sum of the L2

norms for each of the five equations divided by the

number of points. Figure 3 shows the history for the
case of A = 0.4R and A0 = 0.04. This calculation was

initialized using the converged solution for A0 = 0.026
so the residual starts out relatively low then, and drops

2.5 orders of magnitude to meet the convergence cri-

terion, Figure 3a. The spikes in this figure result from
the update of the turbulence each time the calcula-

tion is restarted. Recall that turbulence is only cal-

culated on the flat plate portion of the body and is

frozen after the initial drop in the residual. Notice



,*2

?,
N

c;
II

hi)

0.12

0.10

0.08

0.06

0.04

0.02

-- Numerical

l-D Analysis

jjR

x=o.4R / I

X=o.gR _ .....

a._.

/

0.00 I I I ' _,
-10 -8 -6 -4 -2 0

Skreamwise Distance, x/R

Figure 4: Decay of Peak Vorticity, A0 = 0.04, ReR =

6500

that the spanwise-averaged FrSssling number at tlle

leading edge, Figure 3b, has settled long before the
calculation is terminated. Tile FrSssling number is de-

fined as the Nusselt number divided by tile square root

of the Reynolds number. This figure is representative
of the other cases run.

Decay of Vorticity in the Freestream

Figure 4 demonstrates tile decay of vorticity in
the streamwise direction and the amplification near

the leading edge. Shown in this plot is the y com-

ponent of vorticity as a function of x along the line

y = 0, z = 3A/4 . For the same value of A0 = 0.04,
the A = 0.2R, OAR, and 0.8R results are shown. Also

shown in this plot are the analytical results from equa-
tion 9 with A0 defined so that the vorticity corresponds

to the numerical result at x = x0. Recall that the

analysis does not take into account the presence of the

body, and thus does not predict the amplification near

the leading edge. This plot demonstrates the impor-
tance of the rate of decay in determining the supply of

vorticity to the leading edge region. Notice that the

= 0.2R case has the largest initial vorticity and yet

does not result in the strongest vortex because of the

high rate of decay. This f)lot also indicates that there

is an optimum wavelength in terms of supplying the
most vorticity to the leading edge for a given A0.

The optimnm wavelength for the present Reynolds

number and upstream location from equation 10 is

Aort = 0.33R (11)

which is in agreemgnt with the observation, from the
numerical computation, that A = OAR results in a

stronger structure than the A = 0.2R or the A = 0.SR

L'3
ll
L",,I

(:3
II

o

a=

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

-1.4
-10

\
-- Numerical -_

1-D Analysis q
I I I t

-8 -6 -4 -2

Streamwise Distance, x/R

a. 1_,.

1

0

Figure 5: Decay of Normalized Peak Vorticity, Rea =
6500

cases. Notice from equation 10 that this optimum

wavelength varies inversely with _. If ReI_ were
varied while holding R/IZx constant, then the previous

statement would imply that the optimum wavelength

varies as the inverse of Rv/'-_e_. It is very important

to notice, however, that the optimum wavelength does

not vary with R. (i.e., if Rei_ is varied by changing R,
then the optimum wavelength would not vary). Var-

ious experiments [26, 27, 28, 29] with levels of turbu-
lence on the order of 0.02 and less have observed span-

wise variations with wavelengths that vary inversely as

the square root of Ren. This observation is often used

to support the argument that the disturbance nmst bc

caused by the instability of the leading edge boundary

layer. However, if the upstream variation is made up of

many wavelengths, then the wavelength of the result-

ing disturbance could be seen to vary inversely with

RV_-_a, when the freestream velocity is varied, because

the optimum wavelength predicted by the parallel flow
analysis varies as RV/-_-_. It is not possible at this point

to reach a conclusion, but it would appear that further

investigation of the question of supply versus stability
is warranted.

Figure 5 demonstrates further the agreement be-

tween the calculation and the analysis in the region

of decaying vorticity. In this figure there are fifteen

separate solid lines corresponding to all of the cases

calculated; six cases with A = 0.2R, six cases with

A = 0.4R, and three cases with ,_ = 0.SR. By plot-

ting the vorticity normalized by its upstreana value, the

common rates of decay for each wavelength at several
values of A0 can be seen. Also shown in Figure 5 is the

analytical result for each wavelength. The agreelnent

is quite good considering the simplicity of the analysis.
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Once again, recall that tile analysis does not take into

account the presence of the body, and thus does not

predict the amplification near the leading edge.

Threshold Level for Vortex to Form

It was observed numerically that a minimum am-

plitude at each wavelcngth is required for a vortex to
form. A vortex is considered to have formed when

reverse flow occurs in the z - z symmetry plane. In

Figure 6a, the minimum streamwise velocity Umi, is

shown for three levels of A0 for each wavelength. The

levels of A0 shown correspond to the first three values

of A0, which resulted in reverse flow for each wave-

length. The predicted value of A0 for umi, = 0 is then

extrapolated by fitting a parabola thru the available

data points. Figure 6a demonstrates that the mini-

mum value for A0 which generates a vortex structure

differs by roughly :t=20% of the average for these three

wavelengths. The peak level of vorticity supplied to

the leading edge, as predicted by the parallel flow anal-
ysis, is evaluated for each case from

_(n, 3A/4) (12)
_fiL.E. -- _'U/R

R 47r 2 R _ (R -
= AoTexp(___eR(__) Zo)) (13)

where (R - xo)/R -- 9 for all of the present cases.
This quantity is then extrapolated quadratically to the

point of umi, = O. The predicted level of vorticity
to the, leading edge differs by less than 4-5% for the

three wavelengths considered in Figure 6b. From this

result it seems possible that, for a given wavelength
and Reynolds number, the minimum A0 required for

a structure to form could be estimated from

- 4_r2 R 2(R-z0)
Ao,,h = --_gtL.E.,thexp(-_-_eR (_ ) -_ ) (14)

where (-_L.E.,th is a constant and is deduced from previ-

ous cases, and (R-z0) is the distance from the leading

edge to the upstream boundary. It is very important

to recall that the present analysis is only valid in re-

gions where A0 << 1; thus, (R - x0) could not be
interpreted as the distance to a screen upstream, al-

though changes in (R- x0) would correspond directly

to changes in the screen position. Notice that as the

Reynolds number approaches infinity, the level of A0

required at the upstream boundary decreases to a con-

stant. Averaging the three extrapolated values gives

f_L.E.,th = 0.037. Using this value in equation 14 pre-

dicts the threshold level of A0 for each wavelength to

within 4-5% of the extrapolated values in Figure 6a.

It is interesting to note that if the vorticity up-
stream of the body occurs at the optimum wavelength

as defined by equation 10, then the threshold level for

A0 could be written as

Ao ,h lop,= q(R %=o) s== 1,  eRezp(- ) (15)

This result implies that if vorticity is ahvays sup-

plied at the optimum wavelength, the threshold A0

would vary inversely with Rv/-R-_ and directly with

V(R- ,o)lR.
Experimentally, the threshold level has been stud-

ied by Hodson and Nagib [3] and by Kottke [4]. In each

case, a row of wires was placed upstream of a circular



leadingedgeto produceasmallspanwisevariationin
theupstreamvelocity.KottkefoundthatforReynolds
numberssuchthat the wirewakesweresteady,the
upstreampositionof thewiresfor impendingvortex
formationdependedlinearlyontheReynoldsnumber
basedonthewirediameteranddidnotdependonthe
Reynoldsnumberbasedontheleadingedgediameter.

It ispossibleto explainthis trendin termsofthe
supplyof vorticityreachingtheleadingedge.If the
positionx0 is considered to be a fixed distance down-

stream of the wires located at, say, X,oire, then

R - =o= R - xw . - (x0 - (16)

so changes in (R- x0) would correspond directly to
changes in the distance from the wires to the leMing

edge. Requiring that the peak vorticity reaching the

leading edge be a constant, ecluation 9 indicates that

(R - z0) must vary linearly with Rex. This is equiv-
alent to Kottke's observation, since the ratio of wire

spacing to wire diameter is not changed in that experi-
ment. This conclusion also assumes that the dominant

wavelength and A0 do not vary with ReR. Hodson and

Nagib [3] found a correlation between x/R- Xwire/d

and (1 - cr) R_--Rn, where a is the solidity of the screen
and d is the wire diameter. They found a correlation

for a single wire as well as for an array of wires with

various wire diameters. The trend for each case agrees

with the arguments of the present hypothesis. Ignoring

the effects of solidity, this correlation is equivalent to

a linear relation between (R- xwi_,) and Ren. Since

Ren was varied by changing the freestream velocity,

Re_ will differ from Ren by only a multiplicative con-

stant. In fact, if a set of data does exhibit this linear

relation except for some scatter from error, then tak-

ing the square root of each quantity would tend to
enhance the correlation.

Heat Transfer Results

Figure 7 shows the spanwise-averaged FrSssling
number Fr as a function of 0 for A0 = 0.04 and

AIR = 0.2, 0.4, and 0.8. Also shown are the analytical

solution of FrSssling [30] and the PARC3D calculation

for A0 = 0. The FrSssling number is defined as

Nu

vr = (17)
(18)

so

rr'-"-_'_T_ 2 kov_o (Tw )-i_o t,o _ k] _ - 1 (19)

where Nu is the Nusselt number, q_ is the wall heat

transfer, Tw is the wall temperature, and Tt,0 is the
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Figure 7: FrSssling Number vs. Streamwise Distance,

A0 = 0.04, Rea = 6500

freestream total temperature. The thermal conductiv-

ity k and viscosity # are evaluated at the film tem-

perature to minimize the effect of variable properties.

Their effect for the present work is not large, but

it should be noted that evaluating properties at the

freestream temperature can result in FrSssling num-

bers one to two percent higher than those presented.
For the three-dimensional problem, the film tempera-

ture is defined by

T! = 0.25(2Tt,0 + Tw,ma= + Tw,min) (20)

Notice that the FrSssling analysis and the two-

dimensional calculation (i.e., A0 = 0) show good agree-
ment for 0 < 30 °. For 0 > 30 o the FrSssling analysis
decreases faster than the two-dimensional calculation.

This decrease is indicative of a comparison between

a constant wall temperature condition, which is what

the FrSssling analysis uses, and a constant wall heat

flux condition [31]. Also notice in Figure 7, that for the

same value of A0, AIR = 0.4 causes the highest Fr,

which is 18% higher at 0 = 0 than the two-dimensional
result from PARC3D. In fact, the spanwise-averaged

FrSssling number was higher than the two-dimensional
result for every case considered. Increases in the trans-
fer coefficient on the order of 15 - 20% have been seen

experimentally [2, 3, 6] in flows with upstream span-

wise variation. Direct comparison with the present re-

sults would require knowledge of the wavelength and

A0 at several upstream locations so that an estin]ate

of the vorticity supplied to the leading edge could be
made.

Figure 8 shows the spanwise variation of FrSssling
number at 0 = 0 for the same cases shown in Figure

7. Notice that locally, the FrSssling number drops be-
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low the two-dimensional result. This reduction corre-

sponds to the region directly in front of the lower speed

flow and beneath the vortex pair. The drop in Fr is

more than offset by the increase in Fr over most of the

wavelength, causing the spanwise-averaged FrSssling
number to be higher than the two-dimensional result,

as was shown in Figure 7. The implication of this ob-

servation is that the spanwise-averaged temperature

will be lower, but locally the peak temperature will be

greater than the two-dimensional value.

To demonstrate the grid dependence of the present

calculation, Figures 9 and 10 show the Fr6ssling num-

ber at the leading edge as a function of spanwise dis-

tance. Figure 9 shows the results for A = OAR and

A0 = 0.04 for two grids. The difference between the

two grids is that one has geometric stretching in the

spanwise direction, which clusters points in the re-

gion where the vortex forms, while the other grid has
uniform spacing in the spanwise direction. The mini-

mum spanwise spacing in the stretched grid is roughly

a factor of 3 smaller than in the grid with uniform
spacing in the spanwise direction. Notice that the

Fr6ssling number is only slightly affected by the change
in grid. Figure 10 shows the results for A = 0.2R and

A0 = 0.066. The fine grid, which has twice as many

grid points in each direction, falls within five percent

of the normal grid calculation. It is expected that at

lower values of A0, the agreement would be even bet-
ter.

As was mentioned previously, the spanwise-

averaged Fr6ssling number was higher than the two

dimensional result for every case considered. Figure

11 clearly demonstrates that a small spanwise varia-

tion in velocity is capable of causing a large increase
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Figure 9: Comparison of Grid Dependence

in the heat transfer coefficient. It figure also demon-
strates the minor effect that grid refinement has on the
results.

VI Conclusions
From the present calculations it is hypothesised

that a minimum level of vorticity must be supplied to

the leading edge for a vortex to form. Using a simple

parallel flow analysis to predict the decay of vorticity,

it is further proposed that the appearance of a station-

ary vortex structure can be predicted from upstream

conditions. If a disturbance, dominated by a single

wavelength, is produced upstream of a leading edge,
then the maximum distance between the disturbance

and leading edge that will allow the formation of a

stationary vortex structure will vary linearly with the

Reynolds number based on the dominant wavelength.

This statement is shown to agree qualitatively with

experimental observations [4, 3] as well as with the

present numerical solution of the Navier-Stokes equa-
tions.

The parallel flow analysis also indicates that an

optimum wavelength exists for a given distance to the

upstream disturbance and a given Reynolds number

based on that distance. This optimum wavelength is

found to vary as the inverse of _. This result

may explain the appearance of spanwise variations in

experiments, with wavelengths that vary inversely as

the square root of the Reynolds number, as opposed

to being explained by an instability in the stagnation

flow as has been proposed in the past. If upstream

of the leading edge, a spanwise variation exists con-

sisting of many different wavelengths, then the wave-

length supplying the most vorticity to the leading edge

would vary as the inverse of _ from the above
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argument. If Ren varies while holding the ratio ISx/R
fixed, this would imply a variation with Rv/-ff_n, which

is what has been seen experimentally. It should be

noted that even if the decay is not occurring exactly

as the present analysis would suggest, the trends may
still remain unchanged. For instance, Townsend [32]

has indicated that the amplitude of a periodic distur-

bance in mean velocity for turbulent flow should decay

as in equation 7, except that the coefficient in the ex-

ponential would be increased by the ratio of the turbu-

lent to kinematic viscosity. This technique would not
contradict any of the above mentioned trends.

For all cases considered in this study, it was

found that introducing a spanwise variation into the

freestream always caused an increase in the spanwise-

averaged heat transfer coefficient. The percentage in-

crease in the heat transfer coefficient was substantially

larger than the freestream disturbance expressed as a

percentage of the freestream velocity. For example, a
0.04 disturbance with wavelength 0.4R located 9 radii

upstream of the leading edge resulted in an increase
in the heat transfer coefficient of 18% above the two
dimensional result. This result demonstrates that a

small spanwise variation upstream of a body can be

an important factor in determining the heat transfer

to that body.
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